LOWER YOUR PERSONAL CARBON FOOTPRINT

Standard

img_5619.jpg

LOWER YOUR PERSONAL CARBON FOOTPRINT

Every day we see news reports or read about the devastating effects of climate change and frightening predictions of damage to our planet’s ecosystem.  Most scientists agree that the earth’s climate is warming due to massive carbon dioxide emissions.  Many of us feel powerless to affect changes, but each one of us, as individuals, can make choices to limit carbon dioxide emissions.  We can do this by our own, in our day to day lives.  I have put together a list of 10 things each of us can do to help limit increases in CO2 emissions and even help to capture emissions out of the atmosphere.

  1. Reduce your air travel. Airplanes produce a huge amount of carbon. Take the train, or a bus, or travel with others in an automobile.  One air flight from Los Angeles to New York adds about 25% to the yearly total of the average person’s carbon emission footprint.
  2. Purchase meat produced locally from animals that have been grass-fed on pastures. Try to determine that the land has not been overgrazed. Healthy, well-managed grasslands actually capture a huge amount of carbon dioxide through the growth of grasses, which pull CO2 out of the atmosphere and store it in their leaves, stalks and roots.   Locally purchased meat means it was not shipped over long distances using fossil fuels, so the total carbon emissions are much lower. 
  3. Inspect your home heating system and your home’s insulation. Replace old heating units with new, energy-efficient models. Block drafts, install storm windows or double-pane windows, and add more insulation if needed, especially in attics and floors.   Insulating curtains are helpful in winter to conserve heat. 
  4. Replace any older, inefficient appliances and maintain those you have. Replace older incandescent light bulbs with new LEDs (light-emitting-diodes). Consider adding solar or wind-powered technologies to assist or even replace your power source. 
  5. Maintain your automobile and farm equipment so that all machines run efficiently (thereby using less fuel). Make fewer, more efficient trips in your vehicle and try to car pool with others to save fuel. Having just one more person with you in the vehicle reduces your carbon footprint by half on that road trip.
  6. Use principles of conservation farming on your farm and in your garden. These techniques actually capture CO2 out of the atmosphere!   Forests, hedgerows and grasslands are huge carbon sinks, because growing plants pull carbon from the air and store the excess in their stems, leaves and roots.  Protect the carbon-holding ability of your soil by reducing tilling or not tilling at all.  Rotate crops every year, use organic fertilizers, such as composts and manures, taking care to not over-apply nitrogenous fertilizers that may be washed into water systems.  Do not leave soil to fallow (this causes degradation of soil animals which help plants capture carbon).  Use cover crops as these build soil and capture carbon.  Do not overwater as this smothers soil animals and washes CO2 out of your soil.  Do not overgraze pastures as this reduces carbon capture significantly. 
  7. Consume less by buying fewer, but better products that last longer. Making any one new product uses a lot of carbon. Avoid heavily packages foods and one-use (disposable) products.  Try to purchase products in biodegradable plastic containers and recycle whenever possible. 
  8. Buy locally-produced food. Much carbon is wasted shipping food thousands of miles from where it was grown. Avoid items that have been flown in by air as they have an enormous carbon footprint.  If you garden, try preserving your own food by canning, pickling and drying.   Dried foods are the most efficient and use the least carbon, especially if a solar food dryer is used.  Vegetables and fruit can be stored and kept in a root cellar with a passive ventilation system, which uses no power.
  9. As much as you possibly can, buy any and all products from companies that support committing to a low-carbon future. Because our businesses in our economy are so sensitive to demand, carefully choosing low-carbon footprint products may affect change more quickly than anything else.  
  10. Consider turning part of your lawn into a wildflower garden (make sure this uncut area is at least 12 feet away from the house for fire safety). This will gather more carbon than a regular, trimmed and cut lawn and will promote the growth and presence of native insect pollinators, and reptiles and birds. Plant hedgerows, trees and shelterbelts on your property using well-adapted and native species.  Hedgerows and forests gather the most carbon of any ecosystem on our planet.  Using organic gardening methods will protect and nurture your soil.  It has been estimated that if the entire world switched to organic farming and gardening practices, enough CO2 in the atmosphere would be collected to lower CO2 to preindustrial levels in only three years!

BIBLIOGRAPHY:

Ingram, Dr. Julie, Best Practices for Soil Organic Carbon Management in Agricultural Systems, Countryside & Community Research Institute, UK , 2017

Goode, Cecile M., et. al. Understanding the Impacts of Soil, Climate & Farming Practices on Soil Organic Carbon Sequestration, Australia, 2016

Muchmuller, Megan B., et. al., Emerging Land Use Practices Rapidly Increase Soil Organic Matter, USA, 2015

Zhang, Limimg, et. al, “Toward Optimal Soil Organic Sequestration With Effects of Agriculture Management Practices & Climate Change in Tai-Lake Paddy Soils of China,” In Geoderma, 2016

Smallwood, Mark, Regenerative Organic Agriculture & Climate Change, Rodale Institute, 2013

Advertisements

ORGANIC GARDENING CAN REDUCE CARBON EMISSIONS

Standard

Montana Native Wildflower Mix

THE LOW CARBON FOOTPRINT OF ORGANIC GARDENING

 

We have all heard about rising carbon dioxide gas (CO2) levels in the earth’s atmosphere, which is causing heating, resulting in world-wide climate change.  The atmosphere holds about 800 billion tons of carbon at present.  Another 560 billion tons of carbon is stored in living plant life.  However, the soils of the earth hold the most carbon, about 2,500 billion tons!  Forest and grassland soils contain the most carbon, and soils degraded by chemically-drenched agricultural practices hold the least.  Rainforest soils can contain as much as 10% carbon of total mass, while the poorest and exploited soils have been reduced to as little as 1% of mass.  The process of photosynthesis by plants pulls CO2 out of the air and stores it in living tissues, excess carbon is released through the roots into the soil where it is stored.  This process is known as carbon sequestration.  Plant roots use living soil fungi (mycorrhizae) in the process.  Degraded soils have reduced numbers of these fungi, slowing their ability to sequester carbon.

It is estimated that the world’s agricultural soils have lost 50-70% of their original carbon. Most of that carbon has become CO2 and was released into the earth’s atmosphere.   If that carbon could be returned to the earth’s soils, the carbon in the atmosphere could be reduced enough to mitigate global warming and limit heating to 1.5 degrees Celsius.  We could do this by changing to organic gardening and farming practices. 

Gardening and farming practices that degrade soil are: fallowing, stubble burning, frequent tilling, overgrazing, monoculture cropping and excess application of synthetic fertilizers.  All of these reduce the soil’s carbon-holding capacity, soils dry and erode, and CO2 is released into the atmosphere.   

Organic gardening practices build living, healthy soils able to sequester much higher levels of carbon.   Farming trials in several countries around the globe have shown a rapid increase in carbon in soils where organic gardening and farming methods were employed.  A key to this is increasing organic matter in the soil. 

Methods known to restore soil’s ability to process and store carbon include: tilling as little as possible or not tilling, mulching, using cover crops, management of crop residues, crop rotation, and proper irrigation. 

If you are preparing a new garden space, place a heavy mulch of rotted, damp straw and compost or manure (or bedding from livestock stalls) onto the space for your garden plot.  This will smother existing plants and is best done in fall to be left in place all winter.  In spring, till the garden space, turning the straw and manure under.  This should be the only time you will need to till the soil.  Plant your garden crops immediately, and any areas to be planted later can be seeded to a cover crop.  A thick cover crop will smother weeds and will pull carbon from the air while it builds your soil. 

Rotate your garden or field crops in a four-year (or more) rotation.  (Each kind of plant is grown in a location in the garden or field once every four years.)  This will discourage pests and diseases.  Mulch your garden; this keeps soil animals alive and keeps soils moist and cool.  (Heated or dried soils lose carbon.)   As you weed, either compost the weeds or incorporate them into your soil.  The best time to add manures or compost is in spring or fall.

Plant shelter belts or hedgerows near or around your garden.  These will become homes for pollinators, birds, snakes and other animals beneficial to your garden.  Forests, hedgerows and grasslands hold the most carbon on the planet, so hedgerows and shelter belts help reduce emissions.   

Do not overgraze or till grasslands, because that will reduce the carbon-holding capacity. 

In flower beds and borders, prepare your soil the same way as for vegetables and plant perennial ground covers to act as living mulches.  In low-water landscapes, sedums or creeping yarrow planted between larger plants will act as living mulches.   

Changing to the regenerative methods of organic gardening and farming will result in lower CO2 emissions, healthy foods, heathy wildlife, clean air and clean water. 

 

Bibliography:

Ingram, Dr. Julie, Best Practices for Soil Organic Carbon Management in Agricultural Systems, Countryside & Community Research Institute, UK , 2017

Goode, Cecile M., et. al. Understanding the Impacts of Soil, Climate & Farming Practices on Soil Organic Carbon Sequestration, Australia, 2016

Muchmuller, Megan B., et. al., Emerging Land Use Practices Rapidly Increase Soil Organic Matter, USA, 2015

Zhang, Limimg, et. al, “Toward Optimal Soil Organic Sequestration With Effects of Agriculture Management Practices & Climate Change in Tai-Lake Paddy Soils of China,” In Geoderma, 2016

Smallwood, Mark, Regenerative Organic Agriculture & Climate Change, Rodale Institute, 2013