ALOE VERA, AN HEIRLOOM PLANT EASY TO GROW ORGANICALLY

Standard

IMG_0106

A note to readers: I apologize for the hiatus in writing this blog; the organic greenhouse/nursery I managed closed its doors and I embarked upon a new life adventure. I now work as a Collections Gardener at The Living Desert Zoo and Gardens in Palm Desert, California. There, I am helping to preserve, protect, and propagate rare and ubiquitous plant species from deserts of North America, Africa, Arabia, Madagascar and Australia. I am involved in the conservation of plant and animal species facing extinction. I will continue to contribute to this blog about heirloom plants grown organically. Organic gardening is part of the best future for our planet; organic gardens actually directly capture carbon rather than indirectly and directly release carbon into the earth’s atmosphere. I urge you to do your part to capture carbon and minimize emissions. Together we can save Earth for future generations of all life forms!

ALOE VERA, AN HEIRLOOM PLANT EASY TO GROW ORGANICALLY

By James Sagmiller

Aloe vera is one of our oldest cultivated plants and was primarily grown for use as a medicinal plant. It is mentioned in the “Ebers Papyrus” dating to the 16th century B.C. in Egypt. It was well known by the ancient Greeks and Romans. In Alexander the Great’s time, about 330-360 B.C., a center of cultivation was the island of Socotra in the Indian Ocean and about 240 miles from the Arabian Peninsula. (Aloe vera is carefully illustrated, described, and its uses listed in a herbal written by Dioscorides about 78 A.D., De Materia Medica. It is known to us through a copy included in the Codex Anicinae Julianae of 512 A.D. Dioscorides recommends Aloe vera be used topically for coagulating blood, staunching wounds and for hemorrhoids. He suggests mixing it with wine and honey to use as a rinse for tonsils, gums and sores of the mouth. He says it may be ingested as a “purgative” (laxative). He states that the plant was grown in India, Arabia, Asia, Apulia (Italy), and Andros.

Our illustration above is from The Greate Herball of Gerard (1633 revised version) page 507. The plant on the left is Aloe vera, on the right is Agave americana, a plant often confused with various species of aloe. Gerard repeats the medical uses of Dioscorides, but adds that Aloe vera, when ingested will cure worms also. It is interesting that Gerard recommends hanging live aloe plants from the ceiling, mentioning it will stay alive for months. In cottages in England at that time the warmest area (and probably least prone to frost) in a house would have been near the ceiling.

Indeed, Aloe vera is a tender plant in northern climates. It is actually hardy to about 25 degrees F. when it is grown on well-drained, dryish soil. Plants are commercially grown today in the West Indies on islands such as Curacao and Barbados. The old, incorrect name Aloe barbadensis may derive from the assumption that the plant originated in the West Indies, but Aloe vera is thought to be native to the Arabian Peninsula or possibly North Africa.

Medical use of Aloe vera today is quite controversial, according to the Natural Medicines Comprehensive Database (NMCD). Topical use is generally accepted as safe for use in cosmetics and for burns, sunburns, wounds and mouth rinses. Most of the controversy concerns ingestion of  Aloe vera for various ailments, such as psoriasis, weight loss, constipation, HIV/AIDS, and Herpes simplex. Results of several studies are conflicting, so it is advised to ingest Aloe vera with caution and awareness of risks involved. Aloe vera as ingested is not recommended for lactating women, or within two weeks of surgery, and will react toxically with the drug Digoxin.

I personally have found the fresh, live juice to help heal sunburns and other burns quickly. The fresh gel acts as a moisturizing, protective layer on the skin. The fresh juice contains vitamins C and E plus various minerals. It may be that Aloe vera is most effective only when fresh and “alive” and may change chemically and in effectiveness when dried, pasteurized, or otherwise processed, much as is the case with fresh, as opposed to processed garlic.

Fortunately, Aloe vera is easy to grow! Plants produce prodigious stemless offsets which can be easily used to produce new plants. Take offsets and place them in a shady spot in a temperature of between 60 degrees F. and 90 degrees F. Let them dry off for two or three days, then prepare to pot them up. An organic cactus mix will work, but should not be too alkaline (high pH). If that is used, mix 2 parts cactus mix + 1 part organic potting soil + 1/3 part perlite + 1/16 part coffee grounds + 1/16 part bone meal and mix all together. To make your own organic mix, use 3 parts organic potting soil (or organic compost plus rotted bark or peat) + 1 part sharp grit (such as #2 chicken grit) + 1/16th part bone meal. A clay pot is really best, as the roots of Aloe vera need air. Try to think of a plant’s roots as its lungs. It needs a moist, airy environment to survive. A plastic pot may be used for an aloe plant, but place gravel or perlite in the bottom ⅛ of the pot for drainage. Make sure the pot has drainage holes for excess water to drain away. A mulch of rock chips or grit is excellent and attractive around an aloe plant, and serves to hold new offsets in place until well-rooted, but is not necessary. Room (or greenhouse) temperatures of 65 degrees F. to 90 degrees F. are preferred for this aloe. Aloes grow faster with more light and heat.

Plants can be grown in full sun as we do here outside in the low desert of California’s Coachella Valley, but Aloe vera is adaptable to light shade or part shade and fine plants may be grown in lower light conditions. Just be sure to take care not to over water your plants in shade or dark rooms. The best indoor plants I have seen were grown in east or southeast-facing windows.

Once a year, in mid-spring, top dress your potted plants with bone meal and a thin layer of fresh compost, or repot them one pot-size up.

It is great to have fresh Aloe vera on hand for burns and minor cuts, and the plants are quite beautiful with their blue-green foliage. In full sun, the foliage turns reddish. If lots of light is available, your Aloe vera will bloom with stalks of lovely yellow flowers that attract hummingbirds.

SUSTAINABLE ORGANIC GARDENING WITH COVER CROPS

Standard

oats and field peas cover crop

Healthy, living soil is a vital component of an organic garden.  Soil covered with growing things draws carbon out of the atmosphere and stores it in roots, stems, and leaves.  In sustainable, earth-friendly gardening /farming we do not allow land to fallow, but keep our soil covered with actively growing or dormant plants all year.  This is a win-win situation for your garden; you can have abundant crops yet at the same time help reduce the amount of CO2 in earth’s atmosphere. 

Cover crops build and protect your soil by increasing humus and nutrients.  Cover crops will add organic matter, smother weeds, prevent erosion, break up  compacted soil, provide livestock forage and attract beneficial insects.  In dry summers or dry climates cover crops provide a kind of living mulch, preserving soil moisture. 

The timing of planting and turning under of cover crops is varied, depending on climate, soil requirements, and time of year.  Here in the north (Western Montana) our growing season is short so we have to be precise in our timing of planting, cutting and turning under cover crops.  After vegetables are harvested in the fall a cover crop can be planted immediately.  First, remove vegetable debris; second, till or rake and prepare a six-inch deep seedbed; third, irrigate to moisten soil; and finally, plant your cover crop.  Fall planted cover crops might include: hairy vetch, field peas, crimson clover, summer alfalfa, Mammoth red clover, annual rye grass, winter cereal rye, winter barley, winter wheat, winter oats ,or winter triticale.  Peas or hairy vetch planted together with one or another of the fall/winter cereal grains will add nitrogen and organic matter to the soil.  Oats and peas planted together or hairy vetch and winter rye together are quite effective combinations for fall cover crops.  The grain will protect the legumes somewhat from winter damage, though peas will probably winter kill.  Hairy vetch will vigorously regrow in the spring and can be mown and turned under.  Any cover crop of the grass family, such as cereal grain or annual ryegrass needs to be turned under at least three weeks before a vegetable crop is planted.  Some cereal grasses are allelopathic, which means they release growth inhibiting chemicals that prevent seed germination of other species.  It takes three or more weeks for the chemicals to dissipate.  Since our spring is often late, and short, and sometimes wet, the timing of turning under your cover crop is very important.  In a home garden, if you plan to plant some cool-weather crops early, such as onion sets, cole crops, or spinach, you can pull up or chop out a (non-grass family) cover crop in early spring just before you plant.  It is easy to hoe out hairy vetch by cutting it off below the crown.  You can then prepare the soil and plant immediately. 

Several cover crops can be planted in spring if you have about four to six weeks’ time before you plan to plant a crop.   An example might be if you plan to put in a warm-season crop such as peppers or tomatoes.  A cool-weather cover crop could be put in as soon as the soil could be worked (sometimes as early as April 10 or as late as May 5).  Some useful, early spring cover crops include: crimson clover, medium red clover, Mammoth red clover, white clover, or field peas.  If you have four to six weeks growing time plus three weeks’ time after taking down a cereal grass before you plant you could put in spring oats and field peas, or annual ryegrass.   The plot would be ready to plant your vegetable crop by mid to late June in our Montana climate.  This would limit your choices to fall-maturing cool-weather crops such as cauliflower, Brussels sprouts, lettuce, carrots, etc.

If you plan to have a cover crop during the warm season, buckwheat , mustard, turnips or phacelia all work well in our climate.  Remember to cut mustard or buckwheat when in flower so it will not reseed.   Phacelia will reseed also, but has a long blooming season and is a great pollinator attractant.  Turnips are biennial, so will not reseed the first year. 

In a home garden cover crops need to be considered in crop rotation.  It is best not to plant a cover crop of the Brassica family (Cole crops, such as turnips, mustard, radish, cabbage, etc.) where cole crops are to be planted the following season.  The rule of thumb is to rotate crops so that members of the same plant family are not grown in the same spot for three years or more.  In our certified organic market garden we use a nine year crop rotation plan.  A more practical home garden rotation plan might be only four-years. 

A RECONSTRUCTED HUERTA FOR MISSION SAN FERNANDO REY DE ESPANA

Standard

IMG_6605IMG_6601IMG_6597IMG_6596IMG_6592

A RECONSTRUCTED HUERTA FOR

MISSION SAN FERNANDO REY DE ESPANA

SAN FERNANDO, CALIFORNIA, FOUNDED 1797

By James J. Sagmiller

 

HISTORY

During the period of Spanish exploration of North America (1542-1769) and the Spanish Colonial period (1769-1821) the area we presently call California was known as “Alta California,” which translates to “Upper California.” Baja California, or “Lower California” retains its original name today. The policy of the Spanish crown was to establish Catholic missions to convert native peoples and exploit them for labor. Priests were sent out in pairs, usually with regional support of the military. The first successful, permanent mission in the area was founded in Baja California: Mission Nuestra Senora de Loreto Concho, on Oct. 9, 1697 by Jesuit priests. The king of Spain expelled all the Jesuits in 1768, responding to rumors they had become too powerful. The Jesuits were replaced by Franciscan friars who, as part of the philosophy of their order, are required to take a vow of poverty. Around this time, the Spanish crown decided to establish missions and develop ports in Alta California. Mission San Diego Alcala was the first of these, founded July 16, 1769.

FOUNDING THE MISSION

Several criteria were important for a successful mission: fertile soil, water available for irrigation and drinking, standing timber for building, and a native population that could be converted to Christianity and used for labor.

Mission San Fernando Rey de Espana was founded September 8, 1797 by Padre Fermin Fransisco de Lasuen. It was the seventeenth of the missions founded in Alta California. A man named Francisco Reyes already had a ranch at the site of the mission and it was worked with Native American labor. He decided to donated his land to the church. At an elevation of 1,100 ft., with reliable spring water, a mild coastal climate and twelve inches of rain a year, this was an excellent place to start a mission. The native population originally were hunter gatherers who exploited the rich flora and fauna of the area. Several tribal groups lived nearby, but the two most numerous were the Gabrielino and Tataviam Indians.

THE SITE

The site plan of Mission San Fernando Rey de Espana was of a design typical for Spanish missions. The main focus of the mission complex was the chapel, with its rectangular central nave with altar, and a bell tower adjacent. Other buildings, mostly workshops, were arranged in the pattern of a quadrangle around a large patio (now known as the East Garden).  A soldier’s quarters were located behind, next to the chapel, and a cemetery to the north. A building designed as priest’s quarters and for guest lodgers was the well-known and much-photographed structure with an arched arcade known as the “convento.” The arrangement of buildings in the compound was designed for efficiency but also for protection from bandits, wild animals, and livestock. Irrigated gardens benefited from this protection and were convenient to the kitchen.

The buildings at the mission were built of adobe bricks, made from a mixture of mud and straw and had very thick walls made to support heavy beams and tile roofs. Pine logs were used for beams and the rafters made from sycamore. Eaves were very wide, to protect the adobe from rain.

ECONOMICS OF THE MISSION

The mission was, of necessity, primarily self-sufficient. Natives were trained in many trades, including: blacksmithing, farming, ranching, carpentry, weaving, leather-making, brick-making, and soap-making. Wine was made from grapes and olive oil as well. By 1804, 1,000 Native Americans lived and worked at Mission San Fernando Rey, producing hides, fine leatherwork, tallow, soap, cloth, and wine as well as all the crops needed to support so many. By 1819 there were 12,800 cattle, 7,800 sheep, 176 goats, 45 pigs, 144 mules, 780 horses. The mission was a popular resting place for travelers on El Camino Real (the Royal Road).

HISTORIC MISSION GARDEN

Every mission had to produce as much food as possible to feed its large labor force and create a reserve to act as insurance for famine. Each of the missions planned extensive gardens. These gardens were not the primarily ornamental ones we see today at the missions, but were subsistence gardens of vegetables, fruit, herbs and flowers, all grown together. A garden of this type was referred to as a “huerta.” A literal translation would be “orchard garden.” These gardens looked quite different than modern gardens. They had geometric beds set into dirt or gravel paths, filled with plants grown together in a practical fashion, watered by flood irrigation from “acequias,” small irrigation ditches of gravity-fed water. There was no lawn grass. Everything grown was used for some purpose, such as for food, medicine, dye, cosmetics, wine, or oil.

MISSION GARDENS TODAY

An early photograph shows the East Garden in a ruined state before the workshop buildings were reconstructed. A fountain was originally in the center of the garden, but it was moved about 30 feet to the west and the original design of the garden obliterated as the workshop buildings were rebuilt. What we see now in the East Garden are cement paths set into grass, with various hedges and shrubs, and olive, pine and palm trees. I am presenting here a design for the reconstruction of the huerta that originally occupied the space that is now the East garden, as it might have appeared circa 1804.

A RECONSTRUCTION OF THE EAST GARDEN

In my design for a reconstructed huerta at the mission, the fountain would be returned to the center of the design, with paths leading in four directions from the fountain as well as a path to each of the four corners of the quadrangle. All lawn grass would be removed, and original gravity-fed irrigation ditches, called “acequias,” would be reconstructed as well. The mature olive, palm and pine trees would be left in place, as the use of those species were very much a part of original plantings at the 1797 mission. Paths would be made of ¼ inch gravel and geometric beds would be flood irrigated just as they originally were. Every effort would be made to source seeds and cuttings of original plants known to have been grown at the California missions in the late eighteenth and early nineteenth centuries. Plants requiring irrigation were the most likely candidates to be grown in the huerta, such as fruits, flowers and vegetables.

HISTORIC PLANTS GROWN AT THE MISSIONS

Wheat, corn (maize) and barley were grown at Mission San Fernando Rey, but most probably in outer fields or dryland farmed.  Vegetables that were probably grown in the irrigated huerta and appearing on mission records include: peas, beans, fava beans, cabbage, lettuce, asparagus, onions, tomatoes and chili peppers. Several fruits were grown at the mission: oranges, melons, pears, grapes, pomegranates, apples, quinces, plums, peaches, apricots, figs, olives, avocados and watermelons. Wild plants were also used at the mission. Presumably the Native Americans introduced the padres to them, for they are an excellent, readily available food source. Wild plants and seeds known to have been used at the mission are: chia (Salvia hispanica), sunflowers, acorns, pine nuts, sage, tunas (the fruit of Opuntia spp. cacti), clover, screw beans (mesquite; Prosopis spp.), “nopales” (leaves of Opuntia spp. Cacti) and agave. The chia was probably brought from Mexico.

In a reconstruction of a huerta for Mission San Fernando Rey it was advantageous to consult historic documents from other, contemporary California missions. Records from Mission San Diego dated 1769, reveal that corn (maize), cauliflower, lentils and garlic were grown there. By the 1770s grapes, barley, wheat, lettuce, figs, peppers, squash and pumpkins were grown. By the 1790s, records show that apples, pomegranates, oranges were grown as well. Herbs grown at Mission Santa Barbara included: anise, basil, borage, cilantro, cumin, dill, epazote (Dysphania ambrosioides), horehound, lavender, mint, rosemary, sage, thyme, and valerian. Father Junipero Serra brought the castor oil plant to Mission San Diego in 1769 and the plant was used for its oil. Other early introductions grown at many of the missions (Padilla 1962; Streatfield, 1994) were: calla lilies, Madonna lilies (Lilium candidum), the Castilian rose (Rosa x damascena bifera), the musk rose (Rosa moschata), jasmine, pennyroyal, wild cherry (Prunus illicifolia), Peruvian pepper tree (Schinus molle), matilija poppy (Romneya coulteri), date palm Phoenix dactylifera), Canary Island date palm (Phoenix canariensis), Mexican fan palm (Washingtonia robusta) and native fan palm (Washingtonia filifera).

Utilitarian plants known to have been grown at most of the missions include: agave, cotton, flax and hemp—all used for fiber. Teasel was used for making combs to card wool. Indigo was grown for dye and palm fronds were used for roof thatching and for making brooms. The giant reed (Arundo donax) was used in ramadas to provide slatted shade. Gourds were raised to be cured and carved into bowls and spoons and cat’s claw acacia and Peruvian pepper tree were used for glue.

At Mission Santa Barbara, Tina Foss, Curator of the mission museum and Jerry Sortomme, Professor Emeritus of Santa Barbara City College have been actively restoring a huerta in the mission grounds. They have sourced several plants that can be traced to one or another of the early mission gardens. A cutting from a grape plant known to more than one hundred years old from Gypsy Canyon Winery was tested for DNA. The plant was shown through the tests to be the original ‘Mission Grape’ (known as the ‘Criolla Chica’ in Argentina,’ ‘Negra Corriente’ in Peru, and ‘Pais’ in Chile; Robinson, 1999). Another (untested) grape cutting was obtained from San Ignacio Mission in Baja California from a grape vine known to be more than 250 years old, thus dating from the time of the establishment of the missions.  Ancient cuttings of pear trees from La Purisima Mission in Baja (circa 1800) and from Rio Hondo may prove be the original pear variety ‘Padre.’

Some varieties of vegetables originally grown at the missions in the late 1700s and early 1800s are still available in commerce, and some might be sourced from other historic collections. Most of the herbs are still available; several old varieties of beans, squash and maize are still to be found, as well as lettuces, gourds, melons and chili peppers. Very few peas, carrots, cabbage, cauliflower, onions, and tomatoes have survived; however, I have sourced at least one late eighteenth or early nineteenth century variety of each of these.

DRAWINGS OF CURRENT GARDEN AND A HISTORIC RECONSTRUCTED HUERTA

The drawings I have made show: first, the original layout of structures at the mission, taken from drawings made in a survey of the site in 1933. The second drawing shows the current, historically inaccurate East Garden with cement paths, grass and the fountain moved about 30 feet east of its original location. Third, my plan for the reconstructed huerta, showing overall design of paths and beds, with the fountain restored to its central location. My fourth drawing shows a detail of one of the beds with mixed vegetables, fruit, herbs and flowers, typical of the late eighteenth-early nineteenth century Spanish Colonial style. Existing large olive, palm and pine trees have been retained as part of the reconstructed design. The fifth illustration is a watercolor painting showing what the restored huerta would look like.

BIBLIOGRAPHY

AthanasiusSchafer.com. Mission San Fernando Rey de Espana.

Glybok, Shirley, 1972. The Art of the Spanish in the United States and Puerto Rico. NY:                  McMillan.

Brenzel, Katherine, Ed. 2001. Sunset Western Garden Book. Sunset Publishing, Menlo Park, CA.

Hayes, Virgina, Jan. 23, 2007. “A Huerta for Mission Santa Barbara” Santa Barbara Independent.

Padilla, Victoria, 1961. Southern California Gardens. Los Angeles: University of Caliifornia Press.

Los Angeles County Library.org. Mission San Fernando.

Rivera, Jose A and Thomas F. Glick, 2003. Local Control and Discretionary Authority: Protecting     the Acequia Bordo. From a paper presented at the 51st Congreso Internacional de Americanistas,         Santiago Chile, July 14-18, 2003.

Robinson, Jancis, Ed., 1999. The Oxford Companion to Wine. NY: Oxford University Press.

Streatfield, David C., 1994. California Gardens: Creativity and a New Eden. New York: Abbeville     Press.

 

 

RECREATING A HISTORIC GARDEN

Standard

IMG_6496

RECREATING A HISTORIC GARDEN 

By James J. Sagmiller 

Every state in our nation has a number of historic sites.  The oldest are locations of Native American habitation dating to times before the Colonial Period—these are termed “prehistoric” rather than “historic.”  In order to recreate or restore a very early Native American garden, researchers must rely on archaeological evidence and oral traditions to determine what was grown and how it was grown. One such example is the Kipahulu Living Farm in Hana, Hawaii.  Plants grown in Hawaii by Native peoples prior to the arrival of Captain Cook in 1778 have been collected and preserved at this garden. Gardens like this are a fascinating, educational experience to visit.  Anyone seeking to recreate or restore a garden from the Colonial Period or later would be able to consult written records of various types as well as archaeology and oral traditions.   

The United States National Park Service has developed methods and techniques for the preservation, restoration, reconstruction and rehabilitation of the gardens and architecture of historic gardens.  Charles Birnbaum ((1996) has written a book for the National Park Service outlining four defining methods of approach to restoring and recreating a historic garden.  In the approach of preservation, nothing is added or taken away from the garden; what is there is protected and preserved for the future.  The William Gibbes House garden in Charleston, S.C., designed by Loutrel Biggs in 1929, has been carefully preserved in its original form to the present day.  A second approach is restoration, in which a garden is made to accurately reflect the landscape at a specific time period of historical significance. The Borroughs Plantation in Hardy, Virginia (where Booker T. Washington lived as a slave around 1860) is a good example of the restoration of a living historic farm.  Reconstruction recreates a garden or part of a garden that has since disappeared, except perhaps for the knowledge of where it was located.  This has been done at Mission Santa Barbara, Santa Barbara, CA., where the historic mission huertaor orchard garden, has been reconstructed using cuttings and seeds of plants grown at the mission in the late eighteenth century.  A fourth and final approach to a historic garden is rehabilitation, which brings elements from the past history of the site and applies them to a new use of the property—an adaptation to its use in a new way. This has been done in many places in the U.S., such as in Monterey, California where private businesses have been allowed to occupy as well as preserve historic buildings and gardens.    

There are several research processes we can undertake to restore or recreate a period garden around a private dwelling or a national historic site.  The site should be surveyed, that is measured and carefully studied.  If possible, the garden should be observed over the period of several months to a year to take note of plants that may be dormant, or not visible part of the season.  An example might be spring-flowering bulbs that appear in March, go dormant and disappear by the end of May.  The site might be studied for architectural features such as remains or indications of paths, walls, fences, fountains, irrigation ditches, and the layout of beds.  Lawn grass may grow shorter over buried paving, paths, or fallen walls.   

Early engravings, photographs or postcards are invaluable for reconstructing historic gardens to a specific time in the past.  Occasionally, newspaper clippings, garden plans and/or plant lists are available as well.  During the 1870s many counties in the U.S. published atlases of important residences in their area.  These can be extremely useful in reconstructing a garden of that time period.   

Old herbals and antique catalogs can be consulted to identify plants still existing on heritage sites.  The style of the building(s) on the property will lend information to the period of the garden, or plants still remaining after buildings have disappeared can be studied and placed in historic context.  Rose or peony plants are frequently easier to identify than old perennials, because of the greater amount of contemporary information available.  The practice of ordering plants through the mail became common after about 1850, so old nursery and seed catalogs are valuable in determining what was obtainable. Period gardening and landscaping books will inform how plants were used and often include garden plans or designs.   

It is important to recognize that gardening styles as well as the purposes and use of gardens has changed and continues to change as time passes.  California mission gardens were created for subsistence—that is, for food (grains, vegetables and fruit) and for all the materials needed for medicine, the manufacture of trade goods and fodder for livestock.  The few ornamentals included were probably used for decoration of the altar, quite unlike the gardens we see at most of the missions today, which are strictly ornamental.  A historic garden that is recreated as living history would necessarily require a good deal of research and should be maintained with the tools and techniques of the specific time period it represents. A historic garden made for a period property and lived in by a modern family could be more easily maintained with modern tools and techniques, though an approach using organic methods would be both more in keeping with historic practices and better for the planet. 

Present day organic methods are not necessarily historic, though the use of chemicals did not begin until the late 1800s.  Nicotine was used as a pesticide from the mid-nineteenth century, and Bordeaux Mixture (copper sulfate) as a fungicide around the same period.  The great increase in the use of garden chemicals began in the 1940s and so is not really a significant element in garden care before that time.   

In the coming weeks I will present some research designs for several historic gardens of various time periods, including plant lists, site plans, and maintenance techniques.       

 

 

 

GROWING HEIRLOOM PEAS ORGANICALLY

Standard

IMG_0208

Above: The Blue-Podded Pea, dating to before 1596

Peas love good, rich, moist loamy soils.  Gypsum may be added to heavy clay soils to lighten them, and organic compost is excellent for building mountain and valley soils poor in nutrients.  Fish bone meal, alfalfa meal, and kelp meal are amendments that will provide the complete range of nitrogen, phosphorous and potash to your garden plot necessary for successful vegetable production.  Remember that organic soils are alive with microbes, so food tastes better, is more nutritious, and is safe to eat.  Also, organic soils capture carbon out of the air, reducing heating of our planet’s atmosphere. 

Peas have been grown as a garden crop for centuries and seem to have been a popular vegetable through all that time.  Several heirloom varieties of peas still exist:

‘Blauwschokker’ (Blue-Podded) pea is an ancient variety so old it was described in Gerard’s Herball  written in 1596.  Plants are very healthy and productive.  The pods can be eaten as snow peas when picked early, used as shelling peas later, and dry well for use as soup peas.  The vines of the Blue-podded pea grow 60 to 72 inches tall and require a trellis.

‘Alaska’ is an heirloom pea from 1880.  It is early, ripens all at once, and like many heirloom varieties will dry and keep well.  It is excellent for soup.  The vines grow about 30 inches tall.

‘Tom Thumb’ heirloom pea from 1854 is a miniature pea variety that does not need to be trellised.  The vines grow to 8 or 9 inches tall and are suitable for containers and for growing in cold frames early and late in the season. 

‘Lincoln’ is a famous variety from 1908 that is adapted to warmer American summers.  The vines grow to about 28 inches tall and the pods produce 8 or 9 peas each. 

‘Wando’ is very adaptable to differing climates.  It is more heat resistant than most peas and can be planted later.  ‘Wando’ dates to 1943 and the vines grow about 30 inches tall.

Because peas can take some frost, even while quite young, they can be planted early.  Some people living in milder climates than Montana’s plant their peas on St. Patrick’s Day; 17 of March. 

 Here in Western Montana we make our first sowing April 15 to 20 depending on the weather and the soil temperature.   A second sowing usually is made July 1 (after first crop is harvested.)  It is efficient use of space and easy picking if trellises are set up in the garden bed.  The first crop bears from around June 15 -July 1, and the second crop bears from about September 15-October 25.

Plant your peas in full sun for best production.  The ideal growing temperature is 55–70 F., with 60-65 F. being ideal (peas prefer cool weather).  The optimum soil pH for peas is 5.5-7.5.  Peas will germinate between 40-85 degrees F., but 60-75 F. ideal.  Germination may take 6-17 days.  Direct-sow pea seed 1 inch deep and 1 inch apart.  Plant a few extra at the end of the rows to fill in later as mini transplants.  

Water well; keep the bed moist, not wet.  For the second (midsummer) planting, plant seeds 2-3” deep 1 inch apart, otherwise the same as spring.   Do not let plants dry out at any time, especially during flowering!  Water peas early in the day only, allowing leaves to dry early in the day–steady moisture is best.    

Some pests of peas are: gophers, aphids, birds, mice, cutworms, mites, leafhoppers, cucumber beetles, pea weevils, and various caterpillars.   Powdery mildew can be troublesome also, especially if soil becomes dry and air circulation and sunshine is limited.

To harvest: pick peas when the first pods reach full size: 4”- 5”, not smaller.  Pick snow peas before seeds start to swell.  Snap peas need to be picked when pods are full size, fat, and round with peas inside.  Check and pick every 3 days to keep plants producing.  The first peas ripen at the base of the plant—remove them carefully to not damage plants.  The harvest period should be 4-6 weeks long, for each planting.  Pick all (ready) pods to keep vines producing.  After harvesting keep cool, in high humidity and out of the sun. 

Keep freshly picked peas cool, in high humidity and out of the sun.   Store them in a cool location or in the refrigerator.  Picked pods last only 5-6 days.  Peas do freeze well and most varieties dry and store well. 

 

APRIL NOTES

Standard

primula-veris.jpg

APRIL GARDENING CALENDAR GENERAL

This winter was a “longie” with lots of snow, a situation which voles love!   In our market garden we discovered damage from voles on Campanula medium (Canterbury bells)—just the ones stored in pots in sawdust, but not those in the ground.  Also some potted Primulas, strawberries, and Echinaceas were completely eaten.  It was the same case with these last few; plants in the ground were unharmed, those in pots in sawdust were eaten.  It may be because plants all stored together serve a sort of “banquet” for voles, while those in the ground, mixed in with other plants are harder for the little critters to find.  I am experimenting with inter-planting Fritillaria imperialis (Crown Imperials) with plants that tend to be vole favorites, to see if they will help deter them.  Fritillarias are very odorous, and rodents do not eat them. 

April tasks:

Finish pruning and grafting of fruit trees if not already done.  Plant grapes and other fruiting perennials, shrubs and vines; fertilize and prune raspberries and blackberries.  Start many flowers inside for transplanting out and direct sow the last hardy annuals.  Direct sow many vegetables late in the month and into May.  April is characterized by ups and downs in temperature—watch for frosts!  Protect frames at night and admit air daily.  Place row covers on newly transplanted, slightly tender plants. 

VEGETABLES

If not done already, sow indoors, for transplanting out early in the month: basil, cabbage, celery, tomatoes, broccoli, cauliflower, kohlrabi, head lettuce, artichokes, Brussels sprouts, Asian cabbage, leeks, greens.  After the 15th, sow watermelon, cantaloupe, squash, pumpkins and cucumbers into peat pots for easy transplanting. 

Direct sow these outdoors once weather permits and soil temperatures are above 45 degrees:  beets, arugula, carrots, caraway, celery, chervil, chives, cilantro, dill, fennel, thyme, oregano, sorrel, collards, mache, fava beans, cress, Jerusalem artichokes, kale, kohlrabi, cabbage, cauliflower, leeks, lettuce, mustard greens, rhubarb, turnip greens, onions, parsley, parsnips, peas, potatoes, radishes, salsify, scallions, spinach, Swiss chard.  Sow corn (after the 20th). 

Harden-off vegetables in frames, or by exposing them outdoors a few hours at a time.  Transplant the following hardy vegetables outside around the middle of the month (they can take some light frost): asparagus, broccoli, cabbage, cauliflower, Chinese cabbage, endive, leeks, lettuce, onion sets and plants, Asian greens, parsley.  

FLOWERS

Sow indoors April 1 for transplanting out: Chinese asters (Callistephus), Cerinthe, Celosia, Craspedia, Calendulas, annual Centaurea, Cleome, Cosmos, Cynoglossum, Eragrostis, Panicum, Pennisetum, and annual grasses.  Late in the month: sow zinnias indoors. 

Direct sow outdoors all month: annual alyssum Lobularia maritima), Bupleurum, carnations, pinks, sweet Williams, Cynoglossum, stocks, rose campion, wall flowers, Lychnis, lupines, lavateras, columbines, valerian, polyanthus, auriculas, Canterbury bells, hollyhocks, honeysuckles, rockets, honesty, fox gloves, snapdragons, sweet peas, poppies, larkspur, cornflowers, nigella, Lavatera, poppies, valerian, kiss-me-by-the-garden-gate, dill, morning glory, sweet peas and wildflowers.   

Weed and clean borders.  Divide perennials early in the month: carnations, Bellis, Achilleas, Asters, mums, Campanulas, Centranthus, Coreopsis, Dicentra, Dodecatheon, Echinops, Euphorbias, Gauras, Gaillardias, Gentians, Helianthus, hellebores, daylilies, Heucheras, Hostas, Lobelias, Papavers, Oenotheras, Phlomis, Monarda, Liatris, and Marrubiums

Start dahlia tubers this month and make cuttings if possible. 

Shade auricula primroses from intensifying spring sun.   This is when auriculas need the most water, but remember— never waterlog the compost.  The month of April is their peak bloom period and hybridizing can take place now.  Shows are held this time of year. 

FRUIT

By April 15, finish pruning /grafting/planting fruit trees; spray Bordeaux mix on fruit trees suffering from fire blight; check fruit trees for pests.  Spray superior oil on dormant trees (before leaf out).  Lime-sulfur will control anthracnose or blight on raspberries if applied when the buds first show silver, or on currants and gooseberries at bud break.  Wait three weeks if you decide to spray lime-sulfur (use caution) as a fungicide on roses, lilacs, dormant shrubs, fruit trees, evergreens. 

Weed fruit trees, strawberries, cane fruits.  Set out apple pest traps two weeks before bud break.

TREES, SHRUBS AND ROSES

Lay out lawns by either direct-seeding or purchase turf and roll it out.  If the weather gets windy and dry, water your new lawn frequently. 

Finish transplanting roses and other shrubs (the earlier the better).  Prune established roses after severe frosts.  Cut out all dead and crossed wood, and seal the cuts with water-based glue to prevent the drilling wasps from destroying canes.   Dress rose plants with Epsom salts, wood ashes, compost, manure, alfalfa meal, bone meal, kelp meal, bunt earth, spent hops, etc. , but keep fertilizers 2 inches away from the canes at the base of the plant.  

 

ORGANIC GARDENING NOTES FOR SPRING

Standard
IMG_2891

GREAT WESTERN, HYBRID BOURBON

IMG_2830

DOUBLE WHITE, PIMPINELLIFOLIA (SPINOSSISSIMA)

IMG_5070

LAURE, CENTIFOLIA

 

ORGANIC GARDENING NOTES FOR EARLY SPRING

The ground is thawed in the valley and soon the foothills will be snow free.  As soon as the earth dries out and wet turns to moist, you can work up the soil.  Dry organic amendments can then be forked into your beds.  Organic blood meal (13-0-0) is an excellent source of nitrogen and is quickly taken up by plants.  Alfalfa meal (3-1-3) will enrich soil with a moderate amount of nitrogen, small amount of phosphorous, and a moderate amount of potash.  Ground fish bone meal (5-16-0) also contains moderate amounts of nitrogen, but is a terrific source of phosphorous.  

Well-rotted manure (usually about 3-1-1) will add a good amount of nitrogen and smaller amounts of phosphorous and potash, but adds lots of beneficial, moisture-holding organic matter.  Be careful in sourcing manure as it may contain high levels of salt (especially if sourced from feed lots).  It is safest to use one year old, well-rotted manure on food crops.  Too fresh of manure will burn crops and can contain pathogens.  In our USDA Certified Organic market garden we are only allowed to use manure from grazed land that is at least one year old; and it must be applied at least 120 days before crops are planted.   Another option is to use manure that has gone through a heat of at least 160 degrees F. for 3 weeks; this kills harmful pathogens.  Compost may be spread on a USDA Certified Organic farm or garden but it must be made only from vegetable matter—no meats, dairy products or eggs, etc.  

If you are starting a new garden bed, spread cardboard, rotted moist straw, or tarps to kill grass out.  Newspapers will dry up and blow away unless anchored by rocks or chunks of turf.  You can till right into the turf to prepare your spot, but weeds will be present and you will have to keep after them.  Try to till only once, pull weeds out, add amendments and mulch the soil until ready to plant.  Too frequent tilling destroys the structure of the soil and causes it to release carbon.

Remember that healthy organic soils are alive with microbes and fungi that help plants pull CO2 out of the atmosphere.  By gardening organically you are helping the earth to gather and store carbon dioxide.  This is exactly the opposite environmental effect of conventional gardening, which uses chemical fertilizers and often features bare soil.  Chemical fertilizers require large amounts of carbon to make and bare soil causes soil organisms to die; with the result that soils lose carbon rather than pulling carbon out of the atmosphere and storing it. 

Forest, grassland and hedgerow soils pull the most carbon from the atmosphere of any land ecosystems.  In your garden, you can help this process by setting aside areas for wildflowers and grasses, shrubs, shrub borders and shelter belts or groups of trees with wildflowers and/or groundcovers underneath.  You will be providing habitat for endangered native bees, butterflies, birds and reptiles as well as building carbon storage. 

Now is the time to start your peppers, onions, leeks, tomatoes, tomatillos, and eggplants from seed to set out in May.  Wait until late April/early May to start squash, pumpkins, watermelons, canteloupes, etc.   If you plan to set out cauliflower, cabbage, kale, broccoli or other cole crops in mid-to late April, start them from seed inside now also.   A soil free organic seedling mix can be made from: 3 parts peat, 2 parts vermiculite, and 1 part perlite.  Heat mats placed under flats will aid germination of crops that like warm temperatures, such as peppers and tomatoes.   An east facing window is satisfactory, or fluorescent lights hung a few (8 to 10 inches) inches above the flats. 

Soon containerized fruit trees, shrubs, roses, bulbs, perennials, plus annual flowers and vegetables will be available in your local organic garden shops.  This year, I have grown several varieties of Certified Organic shrub roses on their own roots, found on old homesteads here in the Mission Valley:

‘Great Western’, a Hybrid Bourbon shrub rose is a long-time favorite in our area.  This rose was introduced in 1838, named after one of the first transatlantic steam ships.  It blooms for about three weeks in late spring/early summer. The plant is tall and wide, about 6 feet tall and 5 feet wide.   The flowers are fully double; a blend of rich reds and purples, with wonderful fragrance.  My grandmother grew this rose and there are plants at the museum in Ronan.  ‘Great Western’ is a hardy, easy to grow shrub rose.  The plant spreads slowly. 

‘Laure’, a Centifolia rose from 1837, was found in Ronan, at an old home built in 1913.  It is a rather short plant, with fully double, fragrant, powder pink blooms.  It is also a once bloomer, with a flowering period lasting about 3 weeks in late spring/early summer.  The plant spreads once established, but this is an advantage if your garden has an abundance of voles.  When a young plant is put in, a vole cage could be placed around the roots, but the plant will eventually spread outward and in later years a plant with an abundance of root stems will survive vole trails.  

‘Double White Scotch Rose’ introduced in 1808, is another locally found variety.  It has pure white, double, fragrant flowers in late spring.  It is of the same rose family as ‘Harison’s yellow’ the popular, thorny, hardy yellow shrub rose.  ‘Double white is equally hardy and trouble free, and spreads on its own roots to form a beautiful large group of plants.  I have seen established plants about 7 feet tall and spreading to about 8 or 10 feet wide.

Have a great spring!